A Catalytic Role of XoxF1 as La3+-Dependent Methanol Dehydrogenase in Methylobacterium extorquens Strain AM1

نویسندگان

  • Tomoyuki Nakagawa
  • Ryoji Mitsui
  • Akio Tani
  • Kentaro Sasa
  • Shinya Tashiro
  • Tomonori Iwama
  • Takashi Hayakawa
  • Keiichi Kawai
چکیده

In the methylotrophic bacterium Methylobacterium extorquens strain AM1, MxaF, a Ca(2+)-dependent methanol dehydrogenase (MDH), is the main enzyme catalyzing methanol oxidation during growth on methanol. The genome of strain AM1 contains another MDH gene homologue, xoxF1, whose function in methanol metabolism has remained unclear. In this work, we show that XoxF1 also functions as an MDH and is La(3+)-dependent. Despite the absence of Ca(2+) in the medium strain AM1 was able to grow on methanol in the presence of La(3+). Addition of La(3+) increased MDH activity but the addition had no effect on mxaF or xoxF1 expression level. We purified MDH from strain AM1 grown on methanol in the presence of La(3+), and its N-terminal amino acid sequence corresponded to that of XoxF1. The enzyme contained La(3+) as a cofactor. The ΔmxaF mutant strain could not grow on methanol in the presence of Ca(2+), but was able to grow after supplementation with La(3+). Taken together, these results show that XoxF1 participates in methanol metabolism as a La(3+)-dependent MDH in strain AM1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional investigation of methanol dehydrogenase-like protein XoxF in Methylobacterium extorquens AM1.

Methanol dehydrogenase-like protein XoxF of Methylobacterium extorquens AM1 exhibits a sequence identity of 50 % to the catalytic subunit MxaF of periplasmic methanol dehydrogenase in the same organism. The latter has been characterized in detail, identified as a pyrroloquinoline quinone (PQQ)-dependent protein, and shown to be essential for growth in the presence of methanol in this methylotro...

متن کامل

The second subunit of methanol dehydrogenase of Methylobacterium extorquens AM1.

The nucleotide and deduced amino acid sequence of a novel small (beta) subunit of methanol dehydrogenase of Methylobacterium extorquens AM1 (previously Pseudomonas AM1) has been determined. Work with the whole protein has shown that is has an alpha 2 beta 2 configuration.

متن کامل

Multiple formate dehydrogenase enzymes in the facultative methylotroph Methylobacterium extorquens AM1 are dispensable for growth on methanol.

Formate dehydrogenase has traditionally been assumed to play an essential role in energy generation during growth on C(1) compounds. However, this assumption has not yet been experimentally tested in methylotrophic bacteria. In this study, a whole-genome analysis approach was used to identify three different formate dehydrogenase systems in the facultative methylotroph Methylobacterium extorque...

متن کامل

XoxF is required for expression of methanol dehydrogenase in 1 Methylobacterium extorquens AM 1 2 3

XoxF is required for expression of methanol dehydrogenase in 1 Methylobacterium extorquens AM1 2 3 Elizabeth Skovran, Alexander D. Palmer, Austin M. Rountree, Nathan M. Good and 4 Mary E. Lidstrom 5 Department of Chemical Engineering and Department of Microbiology 6 University of Washington 7 Seattle, WA 98195-2180 8 9 Submission Date: 5-20-11 10 11 12 * Corresponding author: Mailing address: 6...

متن کامل

Lanthanide-Dependent Regulation of Methylotrophy in Methylobacterium aquaticum Strain 22A

Methylobacterium species are representative of methylotrophic bacteria. Their genomes usually encode two types of methanol dehydrogenases (MDHs): MxaF and XoxF. The former is a Ca2+-dependent enzyme, and the latter was recently determined to be a lanthanide-dependent enzyme that is necessary for the expression of mxaF. This finding revealed the unexpected and important roles of lanthanides in b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012